- (2) J. Elguero, C. Marzin, and J. D. Roberts, J. Org. Chem., 39, 357 (1974), and references cited therein.
- (3) M. L. Roumestant, P. Viallefont, J. Elguero, and R. Jacquier, Tetrahedron Lett., 495 (1969). (4) A. N. Nesmeyanov, E. B. Zavelovich, V. N. Babin, N. S. Kochetkova, and E. I. Fedin, *Tetrahedron*, **31**, 1461, 1463 (1975).
 (5) H. Normant, *Angew. Chem., Int. Ed. Engl.*, **6**, 1046 (1967).
 (6) H. Saito, Y. Tanaka, and S. Nagata, *J. Am. Chem. Soc.*, **95**, 324 (1973).
 (7) I. L. Finar, *J. Chem. Soc. B*, 725 (1968).

- (8) L. T. Creagh and P. Truitt, J. Org. Chem., 33, 2956 (1968).
- (9) C. Perchard and M. L. Josien, J. Chim. Phys. Phys.-Chim. Biol., 62, 423
- (1965). J. W. Emsley, J. Feeney, and L. H. Sutcliffe, "High Resolution Nuclear (10) Magnetic Resonance Spectroscopy", Vol. 1, Pergamon Press, Elmsford,
- (12)
- Magnetic Resolution Society, Vol. 1, Pergamon Press, Einston, N.Y., 1965, p. 544.
 J. A. Zapp, Jr., *Chem. Eng. News*, 54, 3 (1976).
 M. T. Chenon, R. P. Panzica, J. C. Smith, R. J. Pugmire, D. M. Grant, and L. B. Townsend, *J. Am. Chem. Soc.*, 98, 4736 (1976).
 J. Elguero, A. Fruchier, and R. Jacquier, *Bull. Soc. Chim. Fr.*, 2064 (1976). (13)(1969)

¹H and ¹³C Nuclear Magnetic Resonance Spectroscopic Study of 6.6-Disubstituted Fulvenium Ions¹

George A. Olah,* G. K. Surya Prakash, and Gao Liang

Department of Chemistry, Case Western Reserve University, Cleveland, Ohio 44106

Received August 30, 1976

A series of 6,6-disubstituted fulvenes including 6-cyclopropyl-6-methylfulvene (5), 6-cyclopropyl-6-phenylfulvene (6), 6,6-(2-norbornylidene)fulvene (7), and 6,6-admantylidenefulvene (8) were prepared by the condensation of cyclopentadiene with the corresponding ketones. Precursor fulvenes were protonated to give the corresponding fulvenium ions under superacidic conditions at low temperatures. Protonation takes place exclusively at the C2 position of the fulvene ring in accord with the calculated electron density distributions. The effects of substituent at $m C_6$ on charge distributions in the studied fulvenium ions are discussed with regard to their respective $^1
m H$ and $^{13}
m C$ NMR data.

Fulvenes are highly colored compounds with considerable chemical reactivity, isomeric with benzenes, but with properties intermediate between those of aromatic and olefinic systems. Synthesis and properties of fulvenes have been reviewed.² For theoretical studies, fulvenes have been of great interest because they represent relatively simple nonalternate hydrocarbons which are readily adaptable to quantum mechanical treatment by either simple valence bond or molecular orbital methods. Thus, for example, the rather large dipole moments found for many 6,6-disubstituted fulvenes have been accounted for by several refinements of HMO type calculations of the parent fulvene.³⁻⁵ Recently more sophisticated calculations were reported on fulvalene ions.⁶ These calculations agree on the point that the dipole moment of the fulvenes is a direct consequence of their electronic structure and the moment is directed with its negative pole toward the ring.

Fulvenes undergo a variety of reactions,^{2d} but relatively little is known about their electrophilic reactions.^{2c} Such reactions, however, are reported on heptafulvenes.⁷ In continuation of our studies on the carbocationic intermediates of electrophilic reactions and particularly on the nature of substituent effects adjacent to carbocationic centers, we wish to report the study, based on ¹H and ¹³C NMR spectroscopic data, of the carbocations obtained upon protonation of 6,6disubstituted fulvenes in superacidic media.

Results

6,6-Dicyclopropylfulvene (1), 6,6-dimethylfulvene (2), 6,6-diphenylfulvene (3), and 6-methyl-6-phenylfulvene (4) were prepared by reported methods.⁸ 6-Cyclopropyl-6methylfulvene (5), 6-cyclopropyl-6-phenylfulvene (6), 6,6-(2-norbornylidene)fulvene (7), and 6,6-adamantylidenefulvene (8) were prepared by the condensation of cyclopentadiene with the corresponding ketones in the presence of sodium ethoxide in ethanol.

Protonation of studied fulvenes was carried out in FSO_3H/SO_2ClF or SO_2F_2 at -78 or -120 °C (using an ethanol/liquid nitrogen bath), respectively. Precursors 2, 5, and

7 gave only polymeric materials with all-acid systems such as HF/SbF₅, FSO₃H/SbF₅, and HF/BF₃. Precursors 1, 3, 4, 6, and 8 gave clean solutions of the resulting ions and the ¹H NMR spectrum of the ion obtained from 1 is shown in Figure 1 together with the ¹³C NMR spectrum of the precursor 7. The ¹H and ¹³C NMR spectra of the ion generated from precursor 8 as representative are shown in Figure 2. The ¹H NMR shifts of the ions obtained are tabulated in Table I. The ¹³C NMR data of the ions as well as their precursors along with the assignments are listed in Tables II and III, respectively.

Discussion

The bonding nature of fulvenes can be qualitatively described in terms of the mesomeric covalent structure 9 and the

Figure 1. (A) ¹H NMR spectrum of ion 16 in FSO₃H/SO₂F₂ at -70 °C. (B, C) ¹³C NMR spectrum of precursor 7 in CDCl₃ at 37 °C: B, proton noise decoupled; C, proton noise coupled.

polar structure 10. The contribution of the dipolar structure can be assessed from the dipole moments, UV absorptions, and NMR shifts. Further, the contribution of 10 is also de-

pendent on the nature of the substituents on the exocyclic α -carbon atom C₆. The effect of substituents on the tendency of aromatization of the cross-conjugated system can also be studied by varying substituents. It has been reported that fulvenes undergo Diels–Alder reactions, both as dienes and as dienophiles, add halogens, and form peroxides, all characteristic olefinic properties.^{2c,d} Fulvenes as cyclic conjugated isomers of benzenoid compounds also undergo substitution reactions. Nucleophilic reagents such as alkyllithiums attack fulvenes at the exocyclic carbon atom C₆ to form alkylcyclopentadienyl compounds. The driving force for this reaction is the gain in resonance energy originating from the transition of the cross-conjugated system to a cyclic Hückeloid 6π -aromatic system.

Electrophilic reactions of fulvenes have not yet attracted much attention. However, fulvenes should be as susceptible to electrophilic reactions as other nonbenzenoid cyclic con-

Table I. ¹H NMR Data^a of Fulvenium Ions in SO₂ClF or SO₂F₂ Solutions at -80 or -70 °C

Ions	Shifts
16	8.5 (b, 1 H, H _a), 8.2 (d, 1 H, H _c , $J_{H_cH_b}$ or $J_{H_aH_b} = 12$
	Hz), 7.4 (b, 1 H, H _b), 3.9 (broad singlet, 2 H, H _d),
	2.0-3.0 (b, 10 H, Cpr protons)
15	8.8-9.1 (m, 2 H, H _a and H _c), 7.7-8.3 (m, 11 H, aromatic
10	protons), 4.3 (s, 2Π , Π_d)
18	8.8-9.1 (b, 2 H, H _a and H _c), 7.7-8.3 (b, 6 H, H _b and
	aromatic protons), 4.2 (s, 2 H, H_d), 3.2 (s, 3 H, CH_3)
17	9.9 (b, 1 H, H _a), 9.1 (d, 1 H, H _c , $J_{H_cH_b}$ or $J_{H_aH_b} = 8$
	Hz), 7.8 (b, 1 H, H _b), 4.2 (b, 3 H, H_d and proton at
	2'), 3.6 (b, 1 H, proton at 2'), 1.9–2.8 (broad
	multiplet, 12 H, protons at 3′, 4′, and 5′)
19	8.6 (d, 1 H, H _a , $J_{H_aH_b}$ or $J_{H_bH_c}$ = 8 Hz), 8.2 (b, 1 H,
	H_c), 7.2–7.9 (broad multiplet, 6 H, H_b and aromatic

protons), 4.2 (broad singlet, 2 H, H_d), 2.9–3.3 (m, 1 H, CH of Cpr), 1.9–2.5 (m, 4 H, CH₂ of Cpr)

^{*a*} Shifts are in δ values from external capillary Me₄Si.

jugated compounds. 3 is known to undergo formylation with ease and in high yield by treatment with Wilsmeier's complex 11.^{9.10} In accordance with theoretical electron density distri-

bution calculations,¹¹ the electrophilic reagent attacks at C_2 of the cross-conjugated system. The fulvenaldehyde 12 undergoes facile reversible protonation to give the conjugated acid 13.^{2c} There was only a reference to an otherwise unpub-

lished Ph.D. Thesis¹² by Hafner^{2c} to have achieved protonation (as well as alkylation and nitrosation) of fulvenes **2** and **3** to corresponding σ complexes of type **14** which were stable

only below -80 °C. For a systematic study of the protonation of fulvenes under stable ion conditions with ¹H and ¹³C NMR spectroscopy, we synthesized a series of 6,6-disubstituted fulvenes and carried out their protonation under superacid conditions at low temperatures.

Fulvene 3 underwent facile protonation in FSO_3H/SO_2ClF at -78 °C at C_2 to give fulvenium ion 15. The ion is stable up

Figure 2. (A) ¹H NMR spectrum of ion 17 in FSO₃H/SO₂ClF at -70 °C. (B, C) ¹³C NMR spectrum of ion 17 in FSO₃H/SO₂ClF at -70 °C: B, proton noise decoupled; C, proton noise coupled.

to -40 °C. In the ¹H NMR spectrum H_a and H_c protons absorb around δ 8.8–9.1 and H_b absorbs along with the aromatic protons around δ 7.7–8.3, showing a shift pattern characteristic of an extended conjugated allyl cationic system. The H_d protons absorb at δ 4.3. In the ¹³C NMR spectrum the most deshielded C₆ carbon absorbs at δ^{13} C 189.9 followed by δ^{13} C₃ 182.5, δ^{13} C₅ 179.2, δ^{13} C₁ 152.1, and δ^{13} C₄ 142.7. This indicates that the charge is highly dispersed along the C₃ to C₆ carbon centers. The para carbons of the phenyl rings are deshielded as compared to the precursor and both the phenyl rings are magnetically equivalent. In the ¹³C NMR spectrum of the precursor the C₆ carbon is deshielded over the C₁ carbon by 7.9 ppm, which justifies the dipolar nature of the C₁–C₆ bond.

Fulvene 1 was also protonated in FSO_3H/SO_2F_2 at $-120\ ^\circ C$ to give the C_2 protonated fulvenium ion 16, which is stable up

to -40 °C (in a sealed NMR tube). In the ¹H NMR spectrum of the ion at -70 °C, H_a absorbed at δ 8.5, H_c at δ 8.2 with a coupling of $J_{H_cH_b}$ or $J_{H_aH_b}$ = 12 Hz with the neighboring proton H_b . H_b absorbs at δ 7.4 as a multiplet. The aliphatic methylene proton absorption is at δ 3.9 as a singlet, which is rather shielded when compared to that in ion 15. The cyclopropyl protons (both α and β) absorb around δ 2.0–3.0. The spectrum is shown in Figure 1. The ¹H shifts clearly indicate the formation of the ion 16 with maximum charge centered

Table II. ¹³C NMR Shifts^a of Fulvenium Ions in FSO₃H/SO₂ClF or SO₂F₂ Solutions at -70 or -80 °C

Ions	C1	C_2	C_3	C_4	C_5	C_6	Substituents at C ₆
17	148.7	44.4	185.5	143.6	180.5	225.3	$C_{2'}$ 45.7, 44.4; $C_{3'}$ 43.8, 43.6; $C_{5'}$ 35.7; $C_{4'}$ 28.2
16	143.0	44.6	165.2	138.6	164.3	224.8	C_{α} 31.9, 21.7; C_{α} 32.4, 22.2
19	155.2	42.8	179.2	140.6	175.7	207.1	C_{i} 132.1; C_{p} 132.1; C_{o} 128.8; C_{m} 128.0; C_{α} 31.4; C_{β} 25.2
18	154.5	49.2	186.3	143.8	180.9	196.3	$C_i 139.9; C_p 138.6; C_o 133.6; C_m 130.1; CH_3 26.6$
15	152.1	47.9	182.5	142.7	179.2	189.1	$C_p 140.5; C_i 139.1; C_o 137.9, 136.8; C_m 129.8$

^a Shifts are in parts per million from external capillary Me₄Si.

Table III. ¹³C NMR Shifts^a of Precursor Fulvenes in CDCl₃ at 37 °C

Fulvenes	Cı	C_2	C ₃	C ₄	C ₅	C_6	Subtituents at C ₆
8	137.1	131.6	120.5	120.5	131.6	167.3	$C_{2'}$ 41.3; $C_{1'}$ 40.9; $C_{4'}$ 38.4; $C_{2'}$ 29.4
7	135.6	129.9 ^c	120.5	120.5	128.8°	163.3	$C_{1'}$ 43.9; $C_{3'}$ 38.8; $C_{7'}$ 38.4; $C_{4'}$ 35.7; $C_{6'}$ 28.7 °: $C_{5'}$ 27.3 °
1	144.9	131.2	121.7	121.7	131.2	160.4	C_{a} 16.3; C_{d} 8.8
6	145.0	130.6 ^b	124.5°	121.5°	128.6 ^{<i>b</i>}	157.0	C_{i} 138.2; C_{p} 133.0; C_{o} 130.6; C_{m} 128.2; C_{o} 17.9; C_{d} 8.0
5	143.9	131.0°	121.3^{b}	121.0^{b}	130.3°	155.4	CH_3 15.5; C_0 18.4; C_3 8.4
3	144.9	129.6	125.4	125.4	129.7	152.8	$C_i 142.3; C_p 133.4; C_o 133.1; C_m 128.7$
2	132.7	131.3	121.3	121.3	131.3	139.3	$CH_{3}^{-23.4}$
4	144.6	130.3 ^{<i>b</i>}	124.8	122.2	129.3	150.7	${f C_i}$ 143.1; ${f C_p}$ 133.0; ${f C_o}$ 132.6; ${f C_m}$ 129.0; ${f CH_3}$ 23.6

^a Shifts are in parts per million from external capillary Me₄Si. ^{b,c} Assignment interchangeable.

at C₆. The ¹³C NMR spectrum also substantiates this conclusion. In the ¹³C NMR spectrum C₆ absorbs at δ^{13} C 224.8 followed by $\delta^{13}C_3$ 165.2, $\delta^{13}C_5$ 164.3, $\delta^{13}C_1$ 143.0, and $\delta^{13}C_4$ 138.5. C_6 is substantially deshielded as compared to previously discussed ion 15 even if one takes into account the unusually large neighboring group deshielding effect by the cyclopropyl groups adjacent to a carbocationic center.¹⁴ The C_{α} and C_{β} carbons of the two cyclopropyl groups show nonequivalence and are also substantially deshielded compared to the precursor 1. The corresponding $^{13}\mathrm{C}$ NMR shifts are $\delta^{13}\mathrm{C}_{\alpha}$ 31.9 and 21.7 and $\delta^{13}C_{\beta}$ 32.4 and 22.4, respectively. The large difference within the C_{α} and C_{β} shifts indicates that one of the cyclopropyl groups is delocalizing charge better than the other. In the ^{13}C NMR spectrum of 1 C_{α} absorbs at $\delta^{13}C$ 16.3 and C_{β} at $\delta^{13}C$ 8.8. The difference between C_6 and C_1 shifts ($\delta^{13}C_6$ – $\delta^{13}C_1 = 15.6$) demonstrates the increased dipolar nature of 1 over 3, which is indeed the case.8b

The symmetrical and highly hindered fulvene 8 in FSO_3H/SO_2ClF at -78 °C gave fulvenium ion 17. The ¹H and

precursor 8 (absorptions at δ 4.2 and 3.2, respectively). The ¹³C NMR spectrum shows C₆ absorption at δ^{13} C 225.3 followed by δ^{13} C₃ 185.5, δ^{13} C₅ 180.5, δ^{13} C₁ 148.7, and δ^{13} C₄ 143.6. The large deshielding of C₆ may also be due to the rigidity of the adamantyl ring skeleton. C₃ and C₅ centers also show considerable charge delocalization as compared to ions 15 and 16. In the ¹³C NMR spectrum of the precursor 8, C₆ is substantially deshielded compared to C₁, the shift difference being δ^{13} C₆ - δ^{13} C₁ = 30.2, which also demonstrates the rigidity of the adamantane cage system as well as the dipolar nature of the species.

Fulvenes 4 and 6, being unsymmetrical, can undergo protonation at either C_2 or C_5 to give rise to two different ions. We protonated the two precursors 4 and 6 in FSO₃H/SO₂ClF at -120 °C and obtained only a single ion in each case; we tentatively assign to the ions structures 18 and 19, respectively.

¹³C NMR spectra of the ion 17 are shown in Figure 2. In the ¹H NMR spectrum H_a absorbs at δ 9.9, H_c at δ 9.1 with a coupling $J_{H_cH_b}$ or $J_{H_aH_b} = 8$ Hz, and H_b at δ 7.8. The methylene protons absorb at δ 4.2. The shift pattern clearly shows that more positive charge is present in the five-membered ring (along C_3 to C_1) than in the previously discussed ions 15 and 16. The two bridgehead protons $H_{2'}$ are also substantially deshielded compared with the corresponding shifts of the However, our data do not allow us to determine the site of protonation with certainty. The two different ionic species formed by the protonation at C₂ or C₅ can become equivalent if the barrier of rotation along the C₁–C₆ bond becomes low due to charge dispersion. In the ¹H NMR spectrum of the ion 18, the H_a and H_c protons absorb around δ 8.8–9.1; H_b absorbs along with aromatic protons at δ 8.3. The methylene absorption occurs at δ 4.2 and the methyl absorption at δ 3.2. In the

precursor 4 the methyl group absorbs at δ 1.85. This shows that substantial positive charge is present at C₆. In the ¹³C NMR spectrum C₆ absorbs at δ ¹³C 196.3 followed by δ ¹³C₃ 186.3, δ ¹³C₅ 180.9, δ ¹³C₁ 154.5, and δ ¹³C₄ 143.8. The aromatic carbons (ortho and para) are notably deshielded as compared to those of the corresponding shifts in precursor 4, indicating greater participation of the phenyl ring to share the positive charge. Considerable charge is also dispersed over the C₃-C₅ centers as indicated by their ¹³C NMR shifts.

Fulvenium ion 19 shows particularly interesting features. In its ¹H NMR spectrum, H_a absorbs at δ 8.6, H_c at δ 8.2, and $H_{\rm b}$ absorbs along with aromatic protons at δ 7.2–7.9. The methylene absorption (H_d) is at δ 4.2. The α and β protons of the cyclopropyl group are also deshielded compared to the precursor, indicating substantial positive charge in the three-membered ring. In the ${}^{13}C$ NMR spectrum C₆ absorbs at δ^{13} C 207.1, falling in between the C₆ shifts of ions 15 and 16, indicating a characteristic shift pattern of the effect of cyclopropyl substitution over that of phenyl. A similar shift pattern is observed in many cyclopropyl, phenyl substituted carbinyl cations.¹⁵ The C_3 carbon absorbs at $\delta^{13}C$ 179.2 followed by $\delta^{13}C_5$ 175.7, $\delta^{13}C_1$ 155.2, and $\delta^{13}C_4$ 140.5. These shifts also fall midway between the shifts of ions 15 and 16. The cyclopropyl carbons (both α and β) are substantially deshielded as compared to precursor 6 shifts, i.e., $\delta^{13}C_{\alpha}\,31.40$ and $\delta^{13}C_{\beta}$ 25.2. It is also interesting to note that little change is observed with aromatic carbon shifts over those of the precursor shifts. This further demonstrates the superiority of cyclopropyl over phenyl groups to share the positive charge in these extended conjugated systems.

Comparing the fulvenium ions 15, 16, 17, 18, and 19, it is evident that positive charge distribution over the C_3-C_6 centers is considerably altered depending upon the nature of the substituents at C_6 . Cyclopropyl groups at C_6 tend to decrease the charge over the C_3 - C_5 positions with a subsequent smaller effect by phenyl and methyl groups. In these extended conjugated cationic systems the cyclopropyl group delocalizes charge better than a phenyl group which in turn is much more effective than a methyl group. The same trend was also observed in our previous studies on allylic cation systems.¹⁴ In the highly strained adamantylidene substituent in 17, the positive charge is highly dispersed over C₃-C₅ centers. Fulvenes 2, 5, and 7 did not give identifiable ions upon protonation in any of the superacidic systems, i.e., FSO_3H , FSO_3H + SbF_5 , HF/SbF_5 , HF, $HF + BF_3/SO_2ClF$, or SO_2F_2 , even at -120 °C. They obviously undergo protonation, but tend to react further with excess, yet unprotonated, precursor to give rise to polymeric products.

The ¹³C NMR spectral data of neutral fulvene precursors 1–8 are tabulated in Table III. The difference in the C₆ and C₁ shifts demonstrates the effect of substituents as well as the dipolar nature of the precursors. The difference in C₆–C₁ shifts from 1 to 8 are 15.6, 6.6, 7.9, 6.0, 11.4, 13.0, 27.7, and 30.2 ppm, respectively. The dipolar nature order can be estimated as 8 > 7 > 1 > 6 > 5 > 3 > 2 > 4. The ¹³C NMR spectrum of the precursor 7, as representative, is shown in Figure 1. In the ¹³C NMR spectra of fulvenes 4, 5, and 6 all the fulvene ring carbons are nonequivalent, which is as expected. In the case of 7 only C₂ and C₅ are nonequivalent, whereas C₃ and C₄ are equivalent. The dipolar nature can also be demonstrated by comparing ¹³C NMR shifts to that of 1,1-disubstituted eth-

ylenes. For example, when comparing cyclopropyl α and β carbon shifts of fulvene 1 to that of 1,1-dicyclopropylethylene **20**, it is found that α carbon is deshielded by 1.3 ppm and the β carbon by 3.6 ppm. This indicates the increased dipolar nature of 1 over **20**. This effect was also demonstrated to some degree by the ¹H NMR shifts by Linde and co-workers.^{8b}

Conclusions

Our study on fulvenium ions shows that protonation occurs exclusively at the C₂ position of the fulvene ring in accordance with calculated electron density distributions. The charge dispersion pattern is governed by the nature of the substituents at C₆ position. Data also show that in the fulvenium ions the ability of neighboring substituent groups adjacent to carbenium center in delocalizing positive charge is c-C₃H₅ > Ph > CH₃ in accordance with previous studies.^{14,15} The increase in the C₁-C₆ carbon chemical shift difference in the neutral precursors indicate their increased dipolar nature.

Experimental Section

Fulvenes 1, 2, 3, and 4 were prepared by reported methods.⁸ 6-Cyclopropyl-6-methylfulvene (5). To a stirred solution of 6.9 g (0.3 mol) of sodium in 75 ml of absolute ethanol under dry nitrogen gas was slowly added a mixture of freshly distilled cyclopentadiene (13.2 g, 0.2 mol) and 16.8 g of cyclopropyl methyl ketone (0.2 mol). After the mixture was stirred for 8 h at room temperature, it was quenched with crushed ice; the product was extracted with methylene chloride, the organic layer washed with water and dried over anhydrous MgSO₄, and the solvent evaporated. The yellow liquid obtained was immediately distilled under vacuum using a 15-cm fractionating column. The fraction distilling at 68 °C (2 mm) was collected, 7.2 g (27.2%), air-sensitive yellow liquid (stable at -78 °C for months). The infrared spectrum (neat, cm⁻¹) showed $\delta_{C==C}$ at 1630 (s), 1615 cm⁻¹ (m). The UV spectrum (cyclohexane) showed maxima at 284 nm (log ϵ 4.31) and 367.5 (2.59). The mass spectrum showed m/e 132 (100, M⁺). The ¹H NMR spectrum (60 MHz, CDCl₃, from external capillary Me₄Si, 37 °C) showed absorptions at δ 5.6–5.9 (s, b, 4 H, H_a, H_b, H_c, and H_d), 1.9-2.3 (m, 1 H, CH of Cpr), 1.65 (s, 3 H, CH₃), 0.7-0.95 (unsymmetric doublet, 4 H, CH₂ of Cpr).

Anal. Calcd for $C_{10}H_{12}$: C, 90.90; H, 9.09. Found: C, 90.89; H, 9.04.

6-Phenyl-6-cyclopropylfulvene (6). The reaction was carried out as described previously with sodium (4.6 g, 0.20 mol), absolute ethanol (60 ml), freshly distilled cyclopentadiene (6.6 g, 0.1 mol), and phenyl cyclopropyl ketone (14.6 g, 0.1 mol). The mixture was stirred for 10 h and then worked up with methylene chloride. The product was distilled under vacuum and the dark orange-yellow liquid distilling at 111–112 °C (0.65 mm) collected, 8.6 g (43%), air-sensitive liquid. The infrared spectrum (neat) showed ν_{C-C} 1600 (m), 1610 cm⁻¹ (s). The UV spectrum (cyclohexane) showed maxima at 287.5 nm (log ϵ 4.35), 370 (2.60). The mass spectrum showed m/e 194 (100, M⁺). The ¹H NMR spectrum (60 MHz, CDCl₃, from external capillary Me₄Si, 37 °C) showed peaks at δ 7.3–7.7 (b, 5 H, aromatic protons), 7.1 (m, 1 H, H_a or H_d), 6.9 (m, 1 H, H_a or H_d), 6.5 (m, 1 H, H_b or H_c), 6.0 (m, 1 H, H_b or T_c).

Anal. Caled for C₁₅H₁₄: C, 92.78; H, 7.21. Found: C, 92.76; H, 7.24.

6,6-Adamantylidenefulvene (8). To a solution of sodium metal (4.6 g, 0.2 mol) in 75 ml of absolute ethanol under dry nitrogen, 6.6 g (0.1 mol) of freshly distilled cyclopentadiene was added followed by immediate addition of adamantanone (15.0 g, 0.1 mol). Stirring was continued at room temperature for 3 h and thereafter the reaction mixture was very carefully quenched with crushed ice, the product extracted with methylene chloride and dried, and the solvent evaporated. The yellow solid obtained was recrystallized from hot ethanol, 16.0 g (81.8%), mp 91–92 °C. The infrared spectrum (CCl₄) showed $\nu_{\rm C=C}$ 1638 cm⁻¹ (s). The UV spectrum (cyclohexane) showed maxima at 273.0 nm (log ϵ 4.34), 281.5 (4.32), and 360.0 (2.52) and a shoulder at 290.5 nm. The mass spectrum showed m/e 198 (100, M⁺). The ¹H NMR spectrum (60 MHz, CDCl₃ from external capillary Me₄Si, 37 °C) showed absorptions at δ 7.93 (s, 4 H, ring protons), 2.67 (2 H, protons of adamantane), 1.07–1.57 (b, 12 H, protons of adamantane) at 3', 4', and 5').

Anal. Calcd for $C_{15}H_{18}$: C, 90.90; H, 9.09. Found: C, 90.88; H, 8.97.

6,6-(2-Norbornylidene)fulvene (7). To a stirred solution of sodium metal (2.3 g, 0.1 mol) in 40 ml of absolute ethanol under nitrogen, 3.3 g (0.05 mol) of freshly distilled cyclopentadiene was added followed by 5.5 g (0.05 mol) of norcamphor. The stirring was continued for 14 h and the reaction mixture was worked up as described earlier. The product was fractionated under vacuum. The yellow, oily fraction distilling at 80-81 °C (0.5 mm) was collected, 4.2 g (53%), air-sensitive liquid. The infrared spectrum (neat) showed $\nu_{\rm C=C}$ 1656 (s), 1620 cm⁻¹ (m). The UV spectrum (cyclohexane) showed maxima at 276.5 nm $(\log \epsilon 4.30), 283.5 (4.28), 365 (2.49), and a shoulder at 295 nm. The$ mass spectrum showed m/e 158 (100, M⁺). The ¹H NMR spectrum (60 MHz, CDCl₃ from external capillary Me₄Si, 37 °C) showed absorptions at δ 6.8 (s, 4 H, ring protons), 3.7 (b, 1 H, bridgehead proton at 1'), 2.9 (b, 3 H, methylene protons at 3' and bridgehead proton at 4'), 1.6-2.4 (b, 6 H, methylene protons at 5', 6', and 7').

Anal. Calcd for C12H14; C, 91.14; H, 8.86. Found: C, 91.06; H, 8.90.

Preparation of Fulvenium Ions. Freshly distilled FSO₃H was dissolved in about twofold amount of SO₂ClF or SO₂F₂ at dry ice/ acetone temperature (ca. -78 °) or ethanol/liquid nitrogen temperature (ca. -120 °C). To this solution was slowly added with vigorous stirring a cooled slurry of the appropriate fulvene precursor in SO₂ClF or SO_2F_2 , to give an approximately 10% solution of the ion.

¹H NMR spectra were obtained on a Varian Model A56/60A spectrometer equipped with variable temperature probes and external capillary Me₄Si was used as the reference. ¹³C NMR spectra were obtained using a Varian Model XL-100

NMR spectrometer equipped with an FT accessory with variable temperature probe as previoulsy described. 16

The infrared spectra were obtained on a Beckman IR-10 spectrophotometer, the ultraviolet spectra were recorded on a Beckman DB-G spectrophotometer, and the mass spectra on a Du Pont Model 21-094 GC/MS system operating at a filament current of 70 eV.

Acknowledgment. Support of our work by the National Institutes of Health is gratefully acknowledged.

Registry No.-1, 4479-62-3; 2, 2175-91-9; 3, 2175-90-8; 4, 2320-32-3; 5, 61010-59-1; 6, 61010-60-4; 7, 61010-61-5; 8, 16668-82-9; 15, 61010-54-6; 16, 61010-55-7; 17, 61010-56-8; 18, 61010-57-9; 19, 61010-58-0; cyclopentadiene, 542-92-7; cyclopropyl methyl ketone, 765-43-5; phenyl cyclopropyl ketone, 3481-02-5; adamantanone, 700-58-3; norcamphor, 497-38-1.

References and Notes

- (1) Stable Carbocations. 203. Part 202: H. Mayr and G. A. Olah, J. Am. Chem. Soc., 99, 510 (1977).
- (2) For reviews see (a) J. H. Day, *Chem. Rev.*, **53**, 167 (1953); (b) K. D. Bergmann, *Prog. Org. Chem.*, **3**, 81 (1955); (c) K. Hafner, K. H. Häfner, C. Konig, H. Kreuder, G. Ploss, G. Schulz, E. Sturm, and K. H. Vöpel, *Angew. Chem.*, *Int. Ed. Engl.*, **2**, 123 (1963); (d) P. Yates, *Adv. Alicyclic Chem.*, **2**, 59 (1969) (1968).

- (1966).
 (3) G. W. Wheland and D. E. Mann, *J. Chem. Phys.*, **17**, 264 (1949).
 (4) G. Berthier, *J. Chem. Phys.*, **21**, 953 (1953).
 (5) A. Julg and A. Pullmann, *J. Chem. Phys.*, **50**, 459 (1953).
 (6) M. A. Oglioruso, J. C. Schug, and S. C. Kitching, *Tetrahedron*, **29**, 4065 (1953). (1973).
- (1973).
 (7) (a) M. Oda, K. Tamate, and Y. Kitahara, *Chem. Commun.*, 347 (1971); (b) T. Otomo, M. Oda, and Y. Kitahara, *ibid.*, 114 (1971).
 (8) (a) See ref 1d; (b) R. C. Kerber and H. G. Linde, Jr., *J. Org. Chem.*, **31**, 4321 (1966); (c) M. Hanack and H. Eggensperger, *Justus Liebigs Ann. Chem.*, **520** (1968).
- 663, 31 (1963). (9)
- A. Vilsmeir and A. Haack, *Ber. Dtsch. Chem. Ges.*, **60**, 119 (1927); C. Jutz, *Chem. Ber.*, **91**, 850 (1940); H. H. Bosshard and A. Zollinger, *Angew.* Chem. Ber., 91, 850 (1940); H. H. Bosshard and A. Zollinger, Angew. Chem., 71, 375 (1959); Helv. Chim. Acta, 42, 1659 (1959); H. Bredereck, R. Gourpper, K. Klemm, and H. Rempfer, Chem. Ber., 92, 837 (1959).
 (10) K. H. Vöpel, Ph.D. Thesis, Universität Marburg, 1960; H. Häfner and K. H. Vöpel, Angew. Chem., 71, 672 (1959); K. Häfner, *ibid.*, 72, 574 (1960).
 (11) G. Berthier and B. Pullmann, Bull. Soc. Chim. Fr., 16, D461 (1949).
 (12) Cited in ref 2c; K. H. Häfner, Ph.D. Thesis, Universität Marburg, 1962.
 (13) In the studied fulvenium ions from 15 to 19 it was not possible to differentiate H_a from H_c or C₃ in both ¹H and ¹³C NMR spectra as H_a lacked any coupling with H_c protons. Hence we have tentatively assigned H_c and C₂

- coupling with H_d protons. Hence we have tentatively assigned H_a and C_s to be more deshielded than H_c and C_s . However, this does not alter any of our conclusions.
- (14) G. A. Olah and R. J. Spear, J. Am. Chem. Soc., 92, 1539 (1975).
- (15) G. A. Olah, G. K. Surya Prakash, and G. Liang, submitted for publication.
 (16) G. A. Olah and G. Liang, J. Am. Chem. Soc., 96, 189 (1974).

Carbon-13 Nuclear Magnetic Resonance. Steric and Electronic Effects on the α , β , and γ Shifts in Norcarane Derivatives

Takashi Ishihara, Teiichi Ando,* Takeshi Muranaka, and Koichi Saito

Department of Industrial Chemistry, Faculty of Engineering, Kyoto University, Kyoto 606, Japan

Received July 13, 1976

Fourier transform carbon-13 nuclear magnetic resonance spectra were measured for a number of endo- and exo-7-substituted and 7,7-disubstituted norcaranes. The substituent shift parameters were calculated from a series of 7-monosubstituted norcaranes and were used for predicting the shifts of stereoisomers of some 7,7-disubstituted norcaranes. The agreement between the observed and the calculated shifts was satisfactory, proving the validity of this general approach. Interpretation of the observed substituent shifts in terms of steric and electronic effects has shown that (1) the α and β substituent effects as well as the γ gauche and anti effects are dependent on the relative orientation of the substituent on the α carbon, and (2) a long-range γ anti effect produced on the γ carbon nuclei by the exo 7 substituent can be explained more reasonably by the back-lobe interaction mechanism than by the hyperconjugative interaction mechanism. Several ¹³C-¹⁹F and ¹³C-¹H coupling constants are also reported and interpreted in terms of the s character of the C-F and C-H bonds, respectively.

The carbon-13 magnetic resonance spectra of a number of molecules containing hetero substituents have been recorded and interpreted in terms of inductive, steric, and bond delocalization effects.¹⁻⁸ In the literature, however, there is no systematic investigation on the conformational and substituent factors, which affect carbon-13 shieldings, in cyclopropyl ring systems possessing hetero substituent(s).

Now we have determined the carbon chemical shifts for a series of norcarane derivatives. These compounds were chosen because the norcaryl skeleton provides a relatively rigid and stereochemically defined framework suitable for the investigation of substituent effects. Our aim was to determine steric and substituent shift factors and to investigate their variations due to the orientational changes of a substituent on the norcaryl skeleton. This will make it possible to test quantitatively the validity of the theories and speculations which have been advanced to explain carbon-13 shieldings on an electronic ground.

Experimental Section⁹

Materials. All 7,7-disubstituted norcaranes except 7-chloro- (and -bromo-) 7-methoxycarbonylnorcarane were obtained by the addition of the corresponding halocarbene (or carbenoid) to cyclohexene.¹⁰ 7-Chloro- (and -bromo-) 7-methoxycarbonylnorcarane was prepared